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1 Introduction

Pure gambling involves the denial of all systems in

the appointment of property, pushing the mind into

a world of anarchy where things come upon one, and

pass from one miraculously. These were John Hob-

son’s thoughts on gambling, contained in an article

written by the 19th-century economist for the Jour-

nal of Ethics [10] in 1905. The article entitled The

Ethics of Gambling provided a thorough analysis of

the factors contributing to the ethical nature of an

act of gambling and discussed the potential social

effects of its widespread diffusion. One interesting

consideration made by Hobson lies in the difference

between Pure gambling and Mixed Gambling: the

first one involves no skill and requires no prior knowl-

edge, hence the need for the help of a miraculous

force, while the latter refers to a series of games of

chance in which skills or prior knowledge can pro-

vide an advantage over other participants. Notably,

just a few games of chance are entirely destitute of

skill, even if that skill is solely related to speed or ac-

curacy in calculating chances. From the standpoint

of those who do have this additional expertise, the

operation ceases to be pure gambling and becomes

mixed gambling. This work aims to leverage the evo-

lution in machine learning techniques to develop a

machine-learning-based betting architecture able to

surpass the concept of pure gambling, as described by

Hobson, by introducing elements of skill and strate-

gic decision-making. At the core of the architec-

ture, modern machine learning techniques such as

XGBoost and Recurrent Neural Networks are used,

leveraging Gated Recurrent Units to enhance the

network’s capacity to retain dependencies over time.

One of the key aspects will be the integration with

SHAP, an explanation framework that offers insights

into the reasoning behind the models’ predictions.

This not only enhances transparency but also en-

ables the assessment of the underlying logic behind

our predictions. After testing the accuracy of the

system in comparison with bookmakers, which rep-

resent the current state-of-the-art in the field, further

testing was performed to determine whether this ar-

chitecture could translate into tangible profits.

2 Background

2.1 Modern Betting

In the modern betting industry, the gambler is pre-

sented with a set of odds for each match, which differ

depending on the chosen bookmaker. A bookmaker

is an organization or a person that accepts and pays

out bets, on sporting and other events, at agreed-

upon odds. When setting these odds, bookmakers

consider various factors, such as team performance,

injuries and historical data, with the main objective

of attracting balanced betting on both sides of an

outcome. Odds can be showcased in various formats

such as European, American or English. Odds will

be assumed to be in European format in the course of

this work. European odds represent the potential re-

turn on a one-unit bet, including the initial stake, ob-

tained by multiplying the wager by the decimal odds.

In the context of a football match, the bookmaker

will offer several different betting markets, where a

betting market is a specific type or category of event,

with odds related to each outcome. These markets

range from broad forecasts on the trend of a match,

for example involving the determination of the min-

imum number of goals scored during the game, to

the exact prediction of the final scoreline, with odds
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typically reflecting the change in probability between

each outcome. It is important to mention that the

odds that are presented to the participants do not ex-

actly reflect the outcome probabilities computed by

the bookmakers, as they usually propose lower odds

to ensure their profit margin, where the margin is

effectively the percentage of the total payout that a

bookmaker keeps as pure profit. Moreover, the book-

maker regularly adjusts the odds based on all incom-

ing bets, a practice known as balancing. This strat-

egy assists the bookmaker in maintaining a profitable

margin and mitigates the risk of overexposure to any

particular outcome. Moreover, bookmakers do not

rely solely on margin and on balancing bets to make

a profit, but their prediction accuracy and scientific

approach are usually what separates them from the

average gambler. Paul & Weinbach, in their 2010

study, concluded that the average gambler acts more

as a fan than as an investor, meaning their choices

are not as impartial as the ones from the bookmaker

[13].

2.2 XGBoost

XGBoost, short for eXtreme Gradient Boosting,

stands out as a highly sophisticated and versatile

implementation of gradient boosting [4], and it has

become a popular choice in various machine learn-

ing applications. For a given dataset D = (X,Y ),

a generic tree ensemble model uses T additive weak

learners to predict the output ŷi as follows:

ŷi = ϕ(xi) =

T∑
t=1

ft(xi), ft ∈ F (2.1)

where xi is a single example, ft is the t-th weak

learner added to the model, ŷi is the prediction for

the i-th example and F = {f(x) = wq(x)} is the

tree space, with q representing the structure of each

tree that maps an example to the corresponding leaf

index. Each ft corresponds to an independent tree

structure q and leaf weights w. In gradient boost-

ing the idea is to add a new function f at each step,

with the objective of minimizing the loss function, ac-

counting for the total ensemble model performances.

Moreover, XGBoost adds a regularization term that

accounts for model complexity. At step t, the follow-

ing loss value is computed for each candidate function

ft

L(t) =

n∑
i=1

l(yi, ŷi
(t−1) + ft(xi)) + Ω(ft) (2.2)

with the regularization term Ω(ft) being

Ω(f) = γK +
1

2
λ||w||2 (2.3)

where K is the number of leaves, w contains the

output values of the tree and λ, γ being the regu-

larization tuning parameters. The introduction of a

penalty function (regularization term) has the pri-

mary goal of discouraging the model from becoming

too complex or fitting the noise in the training data.

Optimizing the first term, which is the training loss,

encourages finding predictive models, while optimiz-

ing the second term, which is the regularization term,

encourages simpler models. At step t the chosen ft
will be the one that minimizes Equation 2.2.

2.3 Recurrent Neural Networks

A recurrent neural network (RNN) is a type of arti-

ficial neural network that is suited to work with se-

quential data or time series data. This is achieved by

incorporating loops within its architecture, enabling

the network to retain a memory of previous inputs.

In a feedforward neural network, each layer has

its own set of weights that are unique to that layer.

When the network processes data, each neuron in a

layer receives inputs from all neurons in the previous

layer, and each connection has its weight. However,

in RNNs, the concept of sharing parameters across

layers comes naturally from the recurrence mecha-

nism. In an RNN, the same set of weights and biases

are utilized at each time step, or in other words, at

every layer of the unfolded network. As shown in

Figure 2.1, W represents the shared weight matrix,

U represents the input-to-hidden layer weight matrix,

and V represents the hidden-to-output layer weight

matrix. With this notion, the recurrent connection

in an RNN can be represented as

ht = σ(W · ht−1 + U · xt + b) (2.4)

where ht is the hidden state at time step t, xt is the

input at time step t, b is the bias term and σ repre-

sents the activation function. When training RNNs,

Backpropagation Through Time (BPTT) is the al-

gorithm used to calculate gradients and update the

shared parameters of the network. Although its prin-

ciples align with traditional backpropagation, there

Figure 2.1: The architecture of a folded and unfolded

recurrent neural network
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Figure 2.2: Diagram of the gated recurrent unit

are some differences due to the different structure of

the network. During the forward pass of BPTT, the

RNN processes the input sequence one element at

a time, updating its hidden state at each time step

based on the current input and the previous hidden

state. The final hidden state is then used to gen-

erate predictions and compute the loss. During the

backward pass, gradients are propagated backward

through time to update the parameters of the net-

work. Since the same parameters are shared across

all time steps, the gradients from each time step are

accumulated and applied to the parameters accord-

ingly.

Standard RNNs suffer from the vanishing gradi-

ent problem, which limits their memory capacity

and their ability to capture long-term dependen-

cies. Consequently, innovative architectures have

emerged: one proposed solution is the Gated Recur-

rent Units (GRUs) architecture, which incorporates

the concept of gating to better regulate the flow of

information.

2.3.1 Gated Recurrent Units

Gated Recurrent Units (GRUs) are a type of RNN ar-

chitecture designed to address some of the limitations

of traditional RNNs, such as difficulties in learning

long-term dependencies. Introduced by Cho et al. in

2014 [5], GRUs have gained popularity due to their

simplicity and effectiveness in capturing sequential

dependencies in data. At their core, GRUs function

similarly to standard RNNs by processing sequential

information in a step-by-step manner. However, they

incorporate a gating mechanism that enables them to

selectively update and reset their internal state, al-

lowing for better handling of long-range dependencies

in the input sequence. A GRU unit, shown in Figure

2.2, consists of two main gates: the update gate zt
and the reset gate rt. These gates control the flow

of information within the unit, facilitating the selec-

tive updating and resetting of the hidden state. The

hidden state ht at each time step is calculated as a

linear combination of the previous hidden state ht−1

and the current input xt, with the update and reset

gates determining the influence of each component.

The update gate is responsible for determining how

much of the previous hidden state should be retained

and how much of the new candidate state should be

included. It is calculated using a sigmoid activation

function:

zt = σ(Wz · [ht−1, xt])

where σ is the sigmoid function, Wz is the weight

matrix for the update gate, and [ht−1, xt] represents

the concatenation of the previous hidden state and

the current input. The reset gate, on the other hand,

decides how much of the previous hidden state should

be forgotten. It is computed similarly to the update

gate:

rt = σ(Wr · [ht−1, xt])

Once the reset and update gates are determined, a

candidate hidden state (h̃t) is computed using the

hyperbolic tangent (tanh) activation function:

h̃t = tanh(Wh · [rt ⊙ ht−1, xt])

where Wh is the weight matrix for the candidate

hidden state, ⊙ denotes element-wise multiplication,

and [rt ⊙ ht−1, xt] is the concatenation of the reset-

gated previous hidden state and the current input.

Finally, the new hidden state (ht) is a combination

of the previous hidden state and the candidate hid-

den state, controlled by the update gate:

ht = (1− zt)⊙ ht−1 + zt ⊙ h̃t.

GRUs, thanks to their gating mechanism, are capa-

ble of selectively retaining or discarding information

at each time step. Additionally, their simpler struc-

ture compared to other gated architectures like Long

Short-Term Memory (LSTM) networks often leads

to faster training times and reduced computational

requirements [6].

2.4 SHAP

Understanding why a model makes a certain pre-

diction can be as crucial as the prediction itself in

many applications, especially those involving medi-

cal treatments or financial transactions, as decision-

makers cannot blindly rely on a model without in-

sight into its decision-making process. While inter-

preting simple models like decision trees is straight-

forward and can be done by following their branches,

with complex models a direct interpretation is usu-

ally not possible. Among model-agnostic explanation

techniques, SHAP, a post-hoc model introduced by

Lundberg and Lee in 2017 [12], stands out. SHAP is

categorized under the class of additive feature attri-

bution methods and aims to understand the under-

lying mechanics of the model by performing a series

3



of perturbations. These perturbations involve ad-

justing features based on a binary mask, where some

features remain unaltered, while others are replaced

with a neutral background value, typically 0 or the

average value from the training dataset. The SHAP

model is seen as a linear function of binary variables:

g(z′) = ϕ0 +

M∑
i=1

ϕiz
′
i (2.5)

where z′ ∈ {0, 1}M , M is the number of simplified

input features, and ϕi ∈ R. In this definition, g(z′)

represents the explanation model, where z′ is a bi-

nary vector representing the perturbated input fea-

tures. In Equation 2.5 ϕ0 represents the bias term,

and ϕiz
′
i represents the contribution of the i-th fea-

ture on the model’s output. In the system proposed

by SHAP, ϕi is the Shapley’s value associated with

the i-th feature. This value directly represents the

importance of the i-th feature in determining the fi-

nal prediction. The higher its associated Shapley’s

value is, the more important and influential the fea-

ture is. Given that the effect of adding or removing a

feature depends on the presence of other features as

well, all feature subsets S ⊆ F , where F is the set of

all features, must be explored. As this is infeasible,

SHAP approximates this by calculating the contri-

bution of each feature across various combinations of

feature subsets. By sampling and averaging the con-

tributions over these subsets, SHAP can accurately

estimate the impact of each feature without exhaus-

tively evaluating every possible combination. This

approach balances computational feasibility with the

need for a comprehensive analysis of feature interac-

tions.

2.5 Related Work

Many studies investigated the strategies of bookmak-

ers and gamblers in sports. Forrest & Simmons in

2000 [8], focused on determining if a statistical model

could be more precise than a seasoned expert in de-

termining the outcome of sport events. As expected,

experts were found less able to process publicly avail-

able data with respect to a statistical model and

cases in which experts could be advantaged due to

independent knowledge were rare. Continuing this

work in 2005 Forrest, Goddard & Simmons [7] deter-

mined that bookmakers were on par with statistical

models, strengthening the idea of bookmakers acting

as investors rather than simply as domain experts.

This work was followed by Angelini and De Ange-

lis in 2018 [2], which examined the effectiveness of

41 bookmakers in 11 European major leagues over

11 years. Some of the bookmaker’s markets turned

out to be inefficient since a trivial strategy of betting

on opportunities with odds in a certain range led to

positive profit.

Many machine-learning techniques were tested

during the two editions of the Soccer Prediction

Challenge, an international machine-learning compe-

tition that invites the machine-learning community

to predict the outcomes of a set of football matches

from leagues worldwide. The majority of the tech-

niques were found to perform similarly, with Gradi-

ent Boosting and Neural Networks working slightly

better than other approaches. The organizers con-

cluded that the most important area of focus should

be the modeling of existing knowledge into the ML

model [3]. Notably, the dataset used in these compe-

titions contained a large amount of data, from hun-

dreds of leagues worldwide, but for every match only

high-level statistics were present, meaning plenty

of in-depth information was overlooked. Recently,

Hubacek [11] introduced a forecasting system de-

signed to profit from sports-betting markets - specif-

ically in NBA - using machine learning, investigat-

ing the need for decorrelation with the bookmaker’s

odds.

3 ML-based system for

outcome prediction

The objective of this work was to train a machine

learning model able to predict whether the total num-

ber of goals scored in a match would exceed or remain

below the 2.5 goals threshold. This outcome, which is

usually referred to as the Under 2.5/Over 2.5 (U/O

2.5) betting market by bookmakers, was a sensible

choice due to several key factors. Firstly it is widely

popular, making it a highly relevant area of study. At

the same time, current literature does not explore it

in depth, preferring the more captivating question of

determining the winning side of a match, rather than

the number of goals scored. Furthermore, despite its

apparent simplicity, this market presents significant

complexity. Bookmakers frequently struggle to accu-

rately predict these outcomes and usually rely on bal-

ancing odds to ensure their profit margin rather than

leaning heavily towards a specific outcome. One of

the central challenges of this task, both for bookmak-

ers and gamblers, lies in the great number of factors

that can influence the final result: team dynamics,

player injuries or form, weather conditions, opponent

tactics and many other unpredictable variables can

influence the probability of the two teams scoring

more or less goals in a given matchday. Through-

out a season, numerous matches anticipated to be
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high-scoring end up as tedious 0-0 tactical battles,

while seemingly dull matches defy expectations with

goals being scored from the start. As much as these

unexpected twists make the beautiful game so excit-

ing, they make it also extremely unpredictable hence

complicating the task at hand.

3.1 Data and Features

Historical data from twelve major football leagues

was analyzed over five seasons (2018-2023), namely

the English Premier League, EFL Championship, La

Liga, Segunda División, Bundesliga, 2. Bundesliga,

Serie A, Serie B, Ligue 1, Ligue 2, Eredivisie, and

Liga Portuguesa. In general, the number of matches

within the data pool was reduced to maintain a high

level of quality in all instances. This decision followed

from the suggestions of the participants of the 2017

Soccer Prediction Challenge [3], an international ma-

chine learning competition that required participants

to predict the result of a set of future matches, us-

ing the provided set of past match events, containing

over 250’000 games, as training data. In the dataset

provided by the organizers, each match only con-

tained high-level data: a temporal ID, team names

and the number of goals scored by each team. One

of the key findings of the competition has been the

difficulty of the prediction model in understanding

complex football patterns, prompting participants to

advocate for enhancing the depth of data available as

a potential solution.

On top of the historical match data, an ELO value,

obtained from ClubELO and meticulously calculated

according to the methodology outlined on their web-

site 1, was associated with each team in each match.

The ELO rating provided the analysis with a sta-

ble measure of a team’s historical quality within its

league, allowing to evaluate not only the team it-

self but also the quality of the opponents that were

faced in previous matches. Maintaining a positive

form during a tough run of opponents adds more

value to the obtained results. Moreover, while re-

cent data is crucial, historical trends are difficult to

invert: established teams with a strong record are

more likely to maintain consistency and gain momen-

tum as the season unfolds; conversely, newly pro-

moted teams or those with a history of underper-

formance may struggle to maintain a steady perfor-

mance level throughout the season. Lastly, utilizing

the U/O 2.5 odds provided by the pool of bookmak-

ers tracked by Football-Data.co.uk enabled a com-

parison of the models’ predictions with the current

state of the art, as represented by the bookmakers.

The task of matching standard names utilized by var-

ious sources to a unique team identifier posed a no-

1http://clubelo.com/System

table challenge during data processing. To address

this issue, the TheFuzz python package 2 was used.

This package employs a fuzzy string-matching algo-

rithm to obtain the likeness between strings, offering

a numerical score indicative of their similarity. In the

few instances where the package failed to identify the

correct mapping, an additional dictionary was man-

ually created.

3.2 Data Preprocessing

The first modeling choice was related to the size of

the window of past matches to consider when com-

puting statistics for the match in focus. When deter-

mining the optimal window size for match selection,

there are three main factors to keep in mind. The

first factor is that the most recent performances are

the most important and impactful information that

can be given to the model, making a shorter window

suitable. On the contrary, though, the more matches

the model can observe, directly or indirectly, the bet-

ter it will be its understanding of the team’s dynam-

ics. This is particularly true when considering mod-

els working with sequential input, which will contain

all the previous match data, rather than the tabu-

lar input, where averaging data over many matches

may lead to losing sight of the recency importance.

The third factor is the start of season problem: if

the model needs a large number of matches to calcu-

late the input vector, then it will not be usable for a

large portion of the season. This problem could be

solved by extending the concept of a season, consid-

ering the final matches of the previous season as the

first matches of the new season, but this option was

discarded as the divergence in team performances

and overall team quality at the start of a new season

can be too large with respect to the previous sea-

son. Taking everything into account, a window size

of five matches was chosen, as it is flexible in terms of

the start of the season problem, yet contains enough

information to perform an informed analysis.

3.2.1 Tabular Preprocessing

XGBoost requires data in a tabular format. Let’s

suppose it is required to compute match data with

a five-match window size to obtain the preview data

usable for predicting match 8. Due to the start of

the season problem, predicting this match would not

be possible if a ten-match window size were required.

Each performance feature value is computed as the

mean of the values from matches 7, 6, 5, 4, and 3,

producing a single aggregated row containing the av-

erage values.

2https://github.com/seatgeek/thefuzz
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3.2.2 Sequential Preprocessing

The preprocessing steps for the GRU-based system

necessitate a fundamentally different approach. In-

stead of aggregating data into a single row, a matrix

of matches is constructed, with each row represent-

ing a distinct match. Additionally, all categorical fea-

tures are transformed into numerical representations.

Finally, it is essential to ensure that the numerical

values in the data are on a similar scale. This in-

volves normalizing them between -1 and 1 to prevent

any disproportionate influence on the model. Note

that during tabular preprocessing, the values were

not scaled, as XGBoost handles normalization au-

tomatically. Once the input data is processed, the

matrix must be converted into an appropriate data

structure, typically a Tensor. At this point, the pre-

processed input sequence is ready to be fed into the

neural network model.

3.3 High-Level Training Architecture

Figure 3.1: High-level view of the training architec-

ture

The training process for the models follows a sys-

tematic and iterative approach designed to optimize

performance, as described in Figure 3.1. After load-

ing the data, a series of preprocessing steps, are

applied to prepare it for compatibility with the se-

lected model architecture. After obtaining the pre-

processed data, the dataset is partitioned into dis-

tinct training and testing subsets. The training sub-

set is further partitioned into ten folds to facilitate

cross-validation. Central to the optimization strat-

egy is Optuna 3, a sophisticated hyperparameter op-

timization framework [1]. Starting from the cross-

validation folds, the chosen model architecture and

a predefined parameter space, Optuna performs a

3https://optuna.org/

series of trials to determine the optimal configura-

tion of hyperparameters. Throughout this iterative

process, Optuna dynamically refines its search, iter-

atively narrowing down the parameter space to iden-

tify configurations that result in superior training

performances. When a trial surpasses the perfor-

mance of its predecessors, the corresponding param-

eter configuration is preserved as the prevailing op-

timal solution. This iterative process continues un-

til the predefined number of Optuna trials is com-

pleted. At this point, Optuna concludes its explo-

ration and the model undergoes retraining using the

entire training dataset. The retraining phase serves

to achieve peak efficacy, leveraging all the training

data. Ultimately, the model performances are evalu-

ated against the previously unseen test dataset.

3.4 XGBoost Based System

When selecting an appropriate model for working

with tabular data, XGBoost was chosen for its

renowned efficiency in handling such data, thanks to

its highly optimized algorithms and parallelization

capabilities. XGBoost offers an extensive array of

tunable parameters, as listed in its documentation 4,

explored using Optuna’s automatic hyperparameter

search. Notably, the most important parameter is

the number of estimators, which corresponds to the

number of trees that will compose the final ensemble.

As can be seen in the high-level XGBoost-based pre-

Figure 3.2: High-level view of the XGBoost-based ar-

chitecture

diction architecture shown in Figure 3.2, the predic-

tion process for a single instance is straightforward.

It’s worth noting that instead of producing a single

binary outcome (0 or 1), XGBoost offers the possi-

bility of obtaining a more interesting result. Instead

of returning discrete labels, the model can provide

4https://xgboost.readthedocs.io/en/stable/parameter.html
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confidence levels for each possible outcome, which

are expressed as a tuple. For instance, consider the

figure example: the predicted label is 1, but simply

knowing this label does not convey the model’s level

of confidence. By examining the (0.33, 0.67) confi-

dence tuple, where the first value represents the Un-

der 2.5 probability and the second value denotes the

likelihood of Over 2.5, it can be concluded that the

model reasonably leans towards the latter. A higher

confidence level indicates greater certainty, helping

to determine when to trust the model’s prediction.

3.5 GRU Based System

GRUs, as recurrent neural networks, excel in captur-

ing temporal dependencies and patterns within se-

quential data. However, this comes with the trade-

off of increased computational complexity and time

consumption, especially when dealing with large vol-

umes of data. The GRU network was implemented

using Keras, a high-level neural networks API run-

ning on top of TensorFlow. In the GRU-based sys-

Figure 3.3: High-level view of the GRU-based archi-

tecture

tem, the prediction process is more convoluted, as

can be seen in Figure 3.3. In this scenario, the in-

put represents a sequence of match descriptions or-

ganized in a matrix format. Each row of the matrix

represents a single match description. The processing

involves recurrent steps where the GRU unit handles

one match description at a time. As it progresses

through the sequence, the GRU updates its hidden

state using the current input and its previous hidden

state, thereby capturing the temporal dependencies

within the match sequence. After the recurrence, a

dense layer followed by a softmax function generates

the confidence tuple, mirroring the same output ob-

tained with XGBoost. To increase the performance

of the GRU model, parameters such as Hidden Size,

Dropout, and Recurrent Dropout were optimized, a

description of which can be found in the Keras doc-

umentation 5.

3.6 Threshold Algorithm

A properly functioning predictive model should be

able to maintain a high level of accuracy on all in-

stances. Therefore, the classic way of assessing its

accuracy would involve testing and considering pre-

dictions on all available matches. On the other hand,

given that the intended focus of this work is on par-

ticipating in the betting and forecasting game as

the gambler rather than organizing it as the book-

maker, there is the advantage of being able to selec-

tively choose which events to concentrate on. Given

the financial nature of the task, system reliability

is key, therefore the final system will discard pre-

dictions supported by a low degree of confidence.

This is achieved using a confidence threshold τ un-

der which the system considers the prediction uncer-

tain. Responsible for the filtering is an algorithm

called FINDUNCERTAINTHRESHOLD, developed in 2023

by Gerevini et Al. [9], as a key component of their

methodology to estimate the prognosis of hospital-

ized patients with COVID-19. The algorithm aims

to find an optimal threshold for determining uncer-

tain predictions based on probability scores. Note

that using an excessively high τ value means that

too many samples (matches) are classified as uncer-

tain, making the model much less useful in generat-

ing profit. To avoid this, during the search for an

adequate τ value, a maximum fraction of training

samples considerable as uncertain is specified. This

is controlled with a parameter, called max u. In the

experimental analysis, the parameter has been kept

at a high value, specifically 0.8 and 0.9, meaning up

to respectively 80% and 90% of all predictions could

be discarded in each run, as the focus was on getting

as many correct predictions as possible rather than

relying on beating the bookmaker in terms of gen-

eral accuracy power, which would be preposterous

given the profit margin mechanism explained in Sec-

tion 2.1, their much longer experience in the domain

and higher data availability.

5https://keras.io/api/layers/recurrent_layers/gru/
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4 Approaches to Sports

Wagering

In the world of sports wagering, finding the right

strategy is a complex task influenced by factors like

risk tolerance or budget availability. This chapter

explores various strategies and investigates their re-

lationship with the prediction architecture.

4.1 Problem Definition

Considering a single league, n matches are played

each round. In the context of a single match, multi-

ple different markets are offered by the bookmaker:

Result, Under/Over, Both teams to score and many

others. As it is reasonable to think that a gambler

bets on a single market on each match, the choice

of the market is itself a problem, as there may be

a different degree of profitability between all the fa-

vorable odds identified by the gambler. To simplify

the problem definition, the betting market is pre-

determined and coincides with the Under/Over 2.5

market. Supposing each gambler will only bet on a

single outcome of the identified market and consider-

ing the binary nature of the select U/O 2.5 market,

the probability of winning the wager is assigned to pi
and the probability of losing the wager as 1−pi. In a

generic market, with a multi-class outcome, pi would

be equal to the probability of the wagered outcome

happening and 1− pi would be the sum of the prob-

abilities of all the other outcomes happening. In the

general formulation, the profit on each bet can then

be defined as

Pi =

{
oisi − si with probability pi

−si with probability 1− pi
(4.1)

where oi is the odd proposed by the bookmaker for

the chosen outcome and si is the amount (stake) that

the gambler decided to bet. If the gambler wins the

bet, then the profit is calculated as the total payout

minus the wagered stake. On the other hand, if the

gambler loses the bet, the profit is negative and cor-

responds to the lost stake. Defining as B the budget

of the gambler, as minbet the minimum bet accepted

by the bookmaker and as si the stake for bet i, where

i identifies the match on which the bet is placed, the

first constraint to which the stake is subject to is

minbet ≤ si ≤ B (4.2)

which means the stake has to be included between

the minimum accepted bet and the maximum budget

at the gambler’s disposal. Deciding on the actual

stake to bet involves a complex balancing act. If the

gambler is confident in making a profit, betting the

entirety of the budget on the most lucrative odd each

time might seem like the logical choice. However, in

reality, perfect predictions are rare. Therefore, it is

crucial to calibrate each stake with both potential

profitability and risk in mind. Several strategies were

implemented to test the system in various scenarios.

While the model may identify matches where it is

confident about the outcome, it does not guarantee

that every one of these matches presents a worthwhile

betting opportunity. For example, if the odds offered

by the bookmaker on a particular match are too low,

it may be wiser to avoid betting on that match. This

means that a strategy is, in its base form, a function

f : (ĉi, oi) → {0, 1} (4.3)

that for each pair of confidence estimate ĉi and odd

oi determines if it is favorable (1) or not favorable (0)

to bet on that outcome in that match. The second

task that the strategy should perform is managing

the gambler’s budget to determine the stake of each

bet. In many of the tested strategies, both tasks

are accomplished simultaneously, proposing a stake

that can vary from 0 to a certain maximum amount.

Finally, note that in the system the number of simul-

taneous wagers is limited, due to the generally low

number of selected matches. Nevertheless, acknowl-

edging the occasional necessity for placing bets on

multiple matches, we have implicitly placed a con-

straint on the betting strategies: in any case, the

strategy is restricted to allocating no more than 10%

of its budget to any single bet. This precautionary

measure also helps to reduce the potential risk of sig-

nificant losses resulting from a single model error.

4.2 Betting Architecture

Upon reaching this point, the prediction model, in

conjunction with the threshold algorithm, has gen-

Figure 4.1: High-level view of the betting architec-

ture
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erated a collection of matches for which the model

should possess a good understanding. The confidence

tuple information along with the corresponding odds

provided by the bookmaker for each match is given

as input to the betting strategy, which produces the

stake to bet. The high-level view of this part of the

architecture is depicted in Figure 4.1.

4.3 Strategies

Several different strategies were tested, with the ob-

jective of determining the effectiveness of the sys-

tem in various scenarios. Ultimately, each strategy

has its advantages and disadvantages, and the choice

of strategy may depend on the gambler’s risk toler-

ance, budget size and betting objectives. For each

strategy, apart from flat betting where the bet re-

mains fixed, three different betting amounts were de-

termined: SMALL BET, NORMAL BET, LARGE BET all ex-

pressed as percentages of the budget. Specifically,

SMALL BET corresponds to 3% of the current bud-

get, NORMAL BET to 6% of the current budget and

LARGE BET to 9% of the current budget.

Flat Betting

Flat betting is the simplest strategy, where the gam-

bler places the same amount on every bet regard-

less of the confidence level or the odds proposed by

the bookmaker. Other than being extremely simple

and easy to manage, it offers an implicit form of risk

management. The wagered amount will be typically

low, to account for all types of bets, thus mitigating

the potential losses resulting from errors made by the

prediction model. Of course, it has many limitations.

By wagering the same amount across all matches,

gamblers may miss out on opportunities to capitalize

on particularly favorable odds. While this approach

may not always be optimal, partial effectiveness is

anticipated due to the thresholded selection process.

Proportional Betting

In its simpler implementation, the concept of propor-

tional betting is similar to flat betting, with the dis-

tinction that to be fixed is not the amount itself, but

rather the percentage of the budget being wagered.

This strategy offers the advantage of automatically

adjusting bet sizes according to the gambler’s bud-

get. This not only reduces the risk of losing the en-

tire budget but also allows for increased stakes when

profits have been realized. In this work, the gambler

is supposed to bet 6% of their budget on every bet,

corresponding to the NORMAL BET size in the notation.

The key idea is that the budget B will vary between

matches if they are not concurrent, thereby changing

the amount wagered on each match.

Odd based

Another potential approach involves adjusting the

betting amount based on the odds proposed by the

bookmaker. This strategy allows the gambler to

decide whether to allocate more resources to lower

odds or higher odds, depending on their chosen risk

factor. For example, participants inclined towards

lower-risk bets may opt to allocate larger sums on

lower odds. This decision derives from the belief

that such bets carry a higher probability of success,

based on the double assurance provided by the book-

maker’s preferred outcome coinciding with the model

assessment. Conversely, if participants are inclined

to take on more risk in pursuit of potentially higher

rewards, they might allocate larger amounts to bets

with higher odds. This strategy is based on the no-

tion of seizing opportunities when the model is confi-

dent about a match ending with a specific outcome,

while the bookmaker may not share the same level of

certainty. Both the high-risk and low-risk strategies

were tested together with the prediction model.

Confidence Intervals

This strategy involves adjusting the stake size based

on the model’s confidence for each prediction. Higher

confidence levels will lead to larger bets, while lower

confidence levels will result in smaller bets. The more

reliable the model is in its assessment, the better this

strategy will work. To implement it, bets are cate-

gorized into different confidence intervals based on

their assigned confidence level. These intervals are

determined by the minimum and maximum confi-

dence values present in the dataset. For example,

if the minimum confidence value is 0.6 and the max-

imum is 0.8, three gates are established at 0.65, 0.7,

and 0.75. A confidence level lower than 0.65 would

correspond to a NO BET, confidence between 0.65 and

0.7 would correspond to a SMALL BET, confidence be-

tween 0.7 and 0.75 would correspond to a NORMAL BET

and confidence higher than 0.75 would correspond to

a LARGE BET. In a real-world scenario, when deploying

this model, it would be crucial to save the interval

levels along with the model and the threshold value,

to ensure consistency. Note that in the threshold im-

plementations, roughly 10% or 20% of bets are kept,

indicating a conservative selection criterion where all

chosen bets hold some degree of value. Consequently,

the allocation of betting amounts has been designed

with this in mind. Should a larger proportion of bets

be retained, it may become necessary to modify the

confidence levels, increasing the scope of the NO BET

or SMALL BET zone.
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Value betting

The final strategy utilizes both odds and confidence

information together. This strategy adjusts bets not

only based on the perceived likelihood of an event oc-

curring (confidence) but also on the potential return

on investment (odds). For bets inside the lowest con-

fidence level (LOWEST CONFIDENCE), no bet is placed

regardless of the odds. This conservative approach

avoids the risk of less certain outcomes. As confi-

dence increases (MODEST CONFIDENCE), bets are placed

but only if the odds are substantial (HIGH ODD). At

the next level (GOOD CONFIDENCE), the strategy be-

comes more aggressive: normal bets are placed on

medium size odds and large bets are placed on higher

odds. At the highest level (HIGH CONFIDENCE), the

strategy suggests placing bets across all odds cate-

gories, with the size of the bet increasing with more

favorable odds. This approach can be viewed as a

hybrid of the opportunity-based and confidence-level

approaches, ensuring that bets are only placed when

there is a justified expectation of winning and the

stake is adjusted for the potential return indicated

by the odds.

5 Results

This chapter explores the effectiveness of the mod-

els and discusses the efficacy of the threshold algo-

rithm. Specifically, the architecture’s performance

was evaluated by simulating betting scenarios for the

2022-2023 season. All strategies outlined in Chap-

ter 4 were employed to test the model’s effectiveness

in conjunction with different approaches. This sim-

ulation provided a measure of the model’s perfor-

mance against bookmaker benchmarks, representing

the current state of the art.

5.1 Configurations

As already discussed, different configurations were

experimented during the testing phase. Across these

configurations, one constant element was the use of

10 cross-validation splits for each model evaluation.

However, due to the distinct characteristics of deci-

sion trees and neural networks, the number of tri-

als was different between XGBoost and the GRU-

based model. To ensure fairness, the same amount of

time was allocated to train each model, specifically 5

hours. The decision to use a random search for GRUs

derives from the relatively low number of executed

trials with respect to XGBoost, which would not have

allowed Optuna to work properly. Furthermore, tests

were conducted on both models with and without the

implementation of the thresholding filter. When ac-

tivating the threshold filter, thresholds of 0.8 and 0.9

were applied, which means the model was capable

of excluding up to 80% and 90% of uncertain pre-

dictions, respectively. Lower threshold levels were

deemed uninteresting for this research.

5.2 Prediction Results

Table 5.1 presents the accuracy results for both

the XGBoost and GRU models. It is evident that

the thresholded systems significantly outperform the

non-thresholded results, as expected. Each result

is compared with the bookmaker accuracy on the

same set of matches. Models were also trained on

different feature subsets to further investigate the

necessity for in-depth information. The consistent

outperformance of models trained on medium-sized

datasets in comparison to those trained on smaller

datasets, and their proximity to those trained on full-

sized datasets, highlights the effectiveness of utiliz-

ing a medium-sized dataset, which strikes the right

balance between granularity of information and sys-

tem efficiency. Notably, this distinction diminishes

in the absence of a threshold, where model perfor-

mances converge. When compared against bookmak-

ers, models without the thresholding filter exhibit a

substantial deviation from the bookmaker’s accuracy.

Conversely, thresholded systems generally match or

closely approach the bookmaker’s performance, often

within a margin of less than 1%. Moreover, within

both the XGBoost-based and GRU-based models, at

least one configuration demonstrates superior per-

formance compared to the bookmaker’s predictions,

Model Small Medium Full

Model Bookie Model Bookie Model Bookie

XGB - No Threshold 56.64% 59.21% 56.28% 59.21% 56.27% 59.21%

XGB - Threshold 0.8 64.24% 64.37% 64.48% 65.36% 64.14% 64.95%

XGB - Threshold 0.9 65.19% 65.49% 67.99% 68.84% 68.46% 67.45%

GRU - No Threshold 55.80% 59.21% 56.18% 59.21% 56.15% 59.21%

GRU - Threshold 0.8 63.57% 63.94% 67.06% 66.04% 65.02% 64.33%

GRU - Threshold 0.9 61.84% 62.26% 68.51% 68.51% 67.64% 67.37%

Table 5.1: The accuracy performance of each model,

compared with the bookmaker’s accuracy

on the same set of matches

Model Accuracy Precision Recall F1 Score Retained

XGB - No Thresh 56.28% 54.00% 61.00% 57.00% 100%

XGB - Thresh. 0.8 64.48% 64.00% 85.00% 73.00% 17.50%

XGB - Thresh. 0.9 67.99% 66.00% 93.00% 77.00% 9.00%

GRU - No Thresh. 56.18% 56.00% 38.00% 45.00% 100%

GRU - Thresh. 0.8 67.06% 69.00% 55.00% 61.00% 15.00%

GRU - Thresh. 0.9 68.51% 73.00% 51.00% 60.00% 7.86%

Table 5.2: The performance of all the models trained

on the medium-size dataset in terms of ac-

curacy, precision, recall, f1 score and the

percentage of matches retained after the

threshold filter
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achieving a margin of up to one percentage point.

In Table 5.2 more in-depth metrics were explored

for models trained on the always reliable medium-

size dataset. The quality varies notably across differ-

ent threshold levels. When no threshold is applied,

the models demonstrate moderate accuracy, preci-

sion, recall, and F1 score. However, as the threshold

increases, there is a consistent improvement in ev-

ery metric, indicating better overall prediction qual-

ity. The final column of the table underscores the

influence of the threshold system on the number of

matches deemed worthwhile for wagering. It is ev-

ident that the performance gains achieved through

higher thresholds come at the expense of significantly

reducing the number of matches on which the sys-

tem suggests to bet. This reduction is particularly

noticeable in the best-performing models, where the

percentage of matches kept drops as low as 7.86%

on the test set. In terms of accuracy, GRUs appear

to have a small advantage over XGBoost. However,

delving into deeper metrics, XGBoost emerges as the

more reliable option overall. This discrepancy could

be attributed to the architecture of the GRU model,

which likely necessitates more time and a larger vol-

ume of data for adequate training.

5.3 Betting Simulation

To assess the potential profits the models could have

yielded during the 2022/2023 season, a simple simu-

lation was designed. Firstly, the starting balance is

set to 100 units. Next, the algorithm begins iterating

through each match, representing a betting opportu-

nity. For each game, it checks if the current balance is

positive. If not, it stops further betting and declares

the simulation ended with a complete loss of the bud-

get. For each match, it calculates the amount to wa-

ger, which will depend on the current tested betting

strategy, the confidence of the model and the pro-

posed odd. Subsequently, the algorithm checks if the

model’s prediction matches the true outcome of the

game. If it does, it calculates the profit based on the

wagered stake and the bookmaker’s odd. Conversely,

if the outcome does not match the model prediction,

the profit is determined as the negative value of the

wagered amount. After processing each match, it up-

dates the balance based on the calculated profit or

loss. Finally, it returns the final balance minus the

starting balance: if the returned value is positive, it

indicates a profit, while a negative value indicates a

loss.

Table 5.3 shows the effectiveness of each strategy

in optimizing the final profit, expressed as a percent-

age of the initial budget. A profit of -100% indi-

cates a complete loss of the budget, while a profit of

100% would signify a doubling of the initial budget

and 50% would signify a half increase, raising the

budget to 1.5 times its original amount. The ab-

sence of the threshold filter is immediately reflected

by a lack of profitability across most strategies em-

ployed on both models, primarily due to the low ac-

curacy of the models and their significant disparity

with the bookmaker’s prediction accuracy. Not only

are the models inaccurate, but they are also play-

ing against a superior opponent. Among the strate-

gies, the value strategy stands out as the only one

demonstrating resilience, managing to generate sub-

stantial profits when applied to the XGBoost model

and almost breaking even when applied to the GRU

model. It’s worth noting that this strategy inherently

incorporates a form of thresholding by determining

bet sizes based on confidence levels and bookmaker’s

odds, which explains its ability to generate a profit.

The importance of the threshold is confirmed when

observing the performance of the Confidence strategy

as well, which is somewhat able to avoid a complete

loss of the budget employing a similar mechanism.

This hints at the necessity for a higher threshold,

as both strategies demonstrate effectiveness by dis-

carding bets in the lower confidence interval while

wagering on those on which the model seems more

confident. Testing the XGBoost model trained with

a 0.9 threshold reveals that almost all strategies yield

a positive profit or manage to break even, which indi-

cates the robustness of the overall architecture. How-

ever, it is intriguing to observe that in this scenario,

the most effective strategy is the one centered on flat

betting. While simple, this approach proves logical

when dealing with pre-filtered, advantageous bets.

By consistently wagering a fixed amount, the need for

additional assessments is avoided. At the same time,

the Value and Confidence strategy struggle, mainly

due to the excessive removal of bets resulting from

the application of a double threshold.

When considering the GRU architecture, apply-

ing a 0.8 threshold already significantly enhances

the overall results, ensuring positive profits across

almost all strategies. Notably, the flat betting

strategy maintains its robust performance and the

opportunity-based strategy also yields promising out-

comes. The superiority of this specific model aligns

with the model’s accuracy results, considering it sur-

passes the bookmaker’s prediction accuracy by 1.5%

Model Fix Prop Conf Cons Opp Value

XGB - No Threshold (Mid) -100% -100% -80% -100% -100% 101%

XGB - Threshold 0.8 (Mid) 2% -49% 36% -58% -47% 20%

XGB - Threshold 0.9 (Mid) 42% 19% -6% 35% -2% -13%

GRU - No Threshold (Mid) -100% -100% -36% -100% -100% -11%

GRU - Threshold 0.8 (Mid) 82% 51% 0% 14% 80% -12%

GRU - Threshold 0.9 (Mid) 21% -1% 4% -5% -2% 3%

Table 5.3: The performance of the models trained on

the medium-size dataset in terms of gen-

erated profit
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and is the only model trained on the medium size

dataset to do so. Using a 0.9 threshold leads instead

to diminished performances, due to the reduced vol-

ume of bets, even though the overall results remain

positive. As observed with XGBoost, employing a

flat betting strategy still emerges as the most effec-

tive approach with this threshold. Ultimately, these

findings highlight the adaptability and effectiveness

of the overall architecture, showcasing its ability to

generate profits across various scenarios and strate-

gies.

6 Model Interpretation and

Practical Usage

This chapter discusses the use of model interpretabil-

ity techniques during both the development and us-

age phases. Additionally, it provides an overview of

the process followed when applying the architecture

in practice.

6.1 Model Intepretation

One of the distinguishing features of the XGBoost-

based architecture is its integration with SHAP

(SHapley Additive exPlanations) 1 [12]. By lever-

aging concepts from game theory, SHAP provides

insights into each feature’s contribution to the final

prediction as explained in Section 2.4. It is crucial

to remember that Shapley’s values do not directly

assess the model’s performance but rather provide

insights into its decision-making process. However,

understanding the rationale behind the model’s pre-

dictions is as invaluable as having a reliable model.

The information offered by SHAP allowed us to dis-

cern whether the model’s reasoning aligned with hu-

man intuition, offering reassurance during the devel-

opment phase and valuable insights during practical

use. This transparency opens the door for the ar-

chitecture to serve also as a supportive tool rather

than operating autonomously, as gamblers can com-

bine their knowledge with the model’s output.

Insightful information that was often examined

during development can be obtained using SHAP’s

beeswarm plot, depicted in Figure 6.1. This plot is

designed to display an information-dense summary of

how the top features in a dataset impact the model’s

output. Each instance’s explanation is represented

by a single dot positioned along each feature row,

1https://github.com/shap/shap

Figure 6.1: SHAP beeswarm plot of the top influen-

tial features on average

with the x-coordinate of the dot representing the im-

portance of that feature for that instance. The den-

sity of dots along each row illustrates the distribu-

tion of Shapley’s values. Additionally, color is uti-

lized to quickly convey an intuition of the original

value of the feature. By default, the features are ar-

ranged based on their mean absolute Shapley’s value.

Upon examination, it becomes apparent that for one

of the best performing XGBoost models - specifically

the one trained with the threshold set at 0.9 on the

medium-sized dataset - the metrics associated with

events in the penalty area - the features ending with

pa - carry substantial importance, whether they are

performed or conceded to opponents. This obser-

vation is in line with logical reasoning, as a greater

amount of time spent in either penalty area generally

indicates more potential for goal-scoring opportuni-

ties. However, it is important to note that this or-

dering prioritizes broad average impact over features

with rare yet high-magnitude impacts.

Figure 6.2: SHAP beeswarm plot of the features with

the highest magnitude impact

The plot in Figure 6.2 showcases the features that

result in the most significant influence on the model’s

decision when they assume either high or low values.

The frequency of touches within the penalty area re-

mains consistently represented, underscoring its sig-
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nificance. As previously highlighted within this work,

a notable correlation emerges between the frequency

of fouls and the likelihood of a match concluding with

fewer goals. This association is rooted in the premise

that highly physical matches often result in fewer

scoring opportunities. There is an interesting rela-

tionship between the opponent’s ELO and the final

outcome, as the model suggests that if the opponent

has a particularly low ELO value, there is a higher

likelihood of the match resulting in more goals. This

assertion aligns with the common observation that

weaker teams are typically more susceptible to con-

ceding multiple goals, thus leading to higher-scoring

matches. Additionally, xG is featured in both expla-

nations: in the first plot as the opponent’s conceded

xG (opp xga), and in the second plot as the xG pro-

duced by the home team (xG). The dependency plot

in Figure 6.3 highlights how Shapley’s values change

based on the xG produced by the team (on the x-

axis) and the xG conceded by the opponent, repre-

sented by the color of the dot. When analyzing this

relationship, distinct intervals can be observed. Es-

sentially, they can be divided into three categories:

xG below 1.5, between 1.5 and 2, and above 2. In

the range where xG is below 1.5, the xg feature im-

portance tends to be either zero or negative and it is

interesting to note that in this range the importance

is lower when the opp xga is higher. This could be at-

tributed to teams with lower xG struggling to convert

opportunities, hence failing to capitalize on the con-

ceded opponent xGA. Additionally, a low team xG

and high opponent xGA suggest weakness on both

sides, potentially leading to a low-scoring match. As

the xG value increases, the dependency on the oppo-

nent xGA stabilizes and the importance of the fea-

ture increases.

Figure 6.3: SHAP dependency plot of the correlation

between the xg and the opp xga features

These plots played a fundamental role in both

the dataset construction phase and the evaluation

of the models. During the dataset construction, they

guided the selection process by highlighting features

consistently utilized by the models, allowing us to

retain only relevant and impactful features in the

smaller datasets. Furthermore, by observing the dis-

tribution of feature importances across instances, it

was verified that the model was not identifying any

anomalous or illogical pattern within the data. Fur-

thermore, to enrich the gambler’s decision-making

process, SHAP was used to generate a visual repre-

sentation of the rationale behind a prediction, specifi-

cally constructing a local explanation through the use

of a waterfall plot delineating the impact of the fea-

tures on the predicted outcome, as in Figure 6.4, pro-

viding a clear understanding of how the model arrives

at its conclusion. In the depicted plot, it becomes

evident that the model leans towards predicting an

Over 2.5 outcome, driven by a sequence of influen-

tial factors. Notably, attributes such as the oppo-

nent’s significant goal-scoring opportunities conceded

(opp xga) and shots on target conceded (sota), in

combination with the substantial xG created by the

home’s team (xG) suggest an open and entertaining

game. Additionally, the high count of touches in the

penalty area implies quick ball movement from one

goal area to another, suggesting a dynamic match

where play predominantly occurs within the penalty

areas rather than being concentrated in the mid-

field. This visualization will be produced together

with each prediction made by the model on future

matches.

Figure 6.4: SHAP local waterfall plot explaining the

reasoning behind a prediction

Ultimately, using both their expertise and the in-

sights provided by the model, the gambler can make

informed decisions about whether to act upon the

model’s recommendations when placing bets or exer-

cise caution.
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7 Conclusions and Future

Works

These findings highlight the significant utility of ma-

chine learning in the field of sports betting and fore-

casting, in accordance with the current literature on

the argument. Both approaches are able to closely

match and sometimes exceed the performance of the

bookmaker’s state-of-the-art predictions when em-

ploying a threshold filtering technique, which selec-

tively retains predictions in which the models ex-

hibit higher levels of confidence. This suggests that

the models have the potential to generate profits, as

confirmed by the outcomes of the simulation con-

ducted using data from the 2022/2023 season. Dur-

ing this period, both the flat betting strategy, where

a fixed amount is wagered on the selected matches,

and the value betting strategy, aimed at adjusting

stake amounts based on the confidence shown by the

model and the available odds, demonstrated the abil-

ity to generate profit. In comparing the two explored

approaches, XGBoost demonstrated greater flexibil-

ity in terms of implementation, testing efficiency and

compatibility with additional technologies such as

SHAP. Conversely, GRUs, with their capacity to au-

tonomously analyze and aggregate sequential data,

demonstrated an advantage in accuracy, resulting in

slightly superior performances even with limited re-

sources. On this matter, the quantity of publicly

available data is fairly limited. However, with ac-

cess to regular data feeds from sports data providers,

there is a reasonable potential for enhancing each

model’s performance. Additionally, the highly pro-

ductive football analytics community continually de-

velops groundbreaking metrics, further contributing

to potential improvements.
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